Copyright by Pierian Data Inc.
For more information, visit us at www.pieriandata.com

Linear Regression Project Exercise¶




Complete the tasks in bold¶

TASK: Run the cells under the Imports and Data section to make sure you have imported the correct general libraries as well as the correct datasets. Later on you may need to run further imports from scikit-learn.

Imports¶

In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Data¶

In [2]:
df = pd.read_csv("../DATA/AMES_Final_DF.csv")
df=df.drop('Unnamed: 0',axis=1)
In [3]:
df.head()
Out[3]:
Lot Frontage Lot Area Overall Qual Overall Cond Year Built Year Remod/Add Mas Vnr Area BsmtFin SF 1 BsmtFin SF 2 Bsmt Unf SF ... Sale Type_ConLw Sale Type_New Sale Type_Oth Sale Type_VWD Sale Type_WD Sale Condition_AdjLand Sale Condition_Alloca Sale Condition_Family Sale Condition_Normal Sale Condition_Partial
0 141.0 31770 6 5 1960 1960 112.0 639.0 0.0 441.0 ... 0 0 0 0 1 0 0 0 1 0
1 80.0 11622 5 6 1961 1961 0.0 468.0 144.0 270.0 ... 0 0 0 0 1 0 0 0 1 0
2 81.0 14267 6 6 1958 1958 108.0 923.0 0.0 406.0 ... 0 0 0 0 1 0 0 0 1 0
3 93.0 11160 7 5 1968 1968 0.0 1065.0 0.0 1045.0 ... 0 0 0 0 1 0 0 0 1 0
4 74.0 13830 5 5 1997 1998 0.0 791.0 0.0 137.0 ... 0 0 0 0 1 0 0 0 1 0

5 rows × 274 columns

In [4]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2925 entries, 0 to 2924
Columns: 274 entries, Lot Frontage to Sale Condition_Partial
dtypes: float64(11), int64(263)
memory usage: 6.1 MB

TASK: The label we are trying to predict is the SalePrice column. Separate out the data into X features and y labels

In [5]:
X=df.drop('SalePrice',axis=1)
y=df['SalePrice']

TASK: Use scikit-learn to split up X and y into a training set and test set. Since we will later be using a Grid Search strategy, set your test proportion to 10%. To get the same data split as the solutions notebook, you can specify random_state = 101

In [6]:
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.1,random_state=101)

TASK: The dataset features has a variety of scales and units. For optimal regression performance, scale the X features. Take carefuly note of what to use for .fit() vs what to use for .transform()

In [7]:
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(X_train)
X_train=scaler.transform(X_train)
X_test=scaler.transform(X_test)

TASK: We will use an Elastic Net model. Create an instance of default ElasticNet model with scikit-learn

In [8]:
from sklearn.linear_model import ElasticNet
In [9]:
elastic_model=ElasticNet(max_iter = 100000)

TASK: The Elastic Net model has two main parameters, alpha and the L1 ratio. Create a dictionary parameter grid of values for the ElasticNet. Feel free to play around with these values, keep in mind, you may not match up exactly with the solution choices

In [10]:
# l1_ratio = 0 then it's L2 penalty
# L1_ratio = 1 then it's L1 penalty
# l1_ratio = range of values approaching 1 means we're doing CV with L1 penalty

pars={'alpha':[1,100],'l1_ratio':[.1, .5, .7, .9, .95, .99, 1]}

TASK: Using scikit-learn create a GridSearchCV object and run a grid search for the best parameters for your model based on your scaled training data. In case you are curious about the warnings you may recieve for certain parameter combinations

In [11]:
from sklearn.model_selection import GridSearchCV 
In [12]:
grid_model=GridSearchCV(elastic_model,pars,scoring='neg_mean_squared_error')
In [13]:
grid_model.fit(X_train,y_train)
Out[13]:
GridSearchCV(estimator=ElasticNet(max_iter=100000),
             param_grid={'alpha': [1, 100],
                         'l1_ratio': [0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1]},
             scoring='neg_mean_squared_error')

TASK: Display the best combination of parameters for your model

In [14]:
grid_model.best_params_
Out[14]:
{'alpha': 100, 'l1_ratio': 1}

TASK: Evaluate your model's performance on the unseen 10% scaled test set. In the solutions notebook we achieved an MAE of $\$$14149 and a RMSE of $\$$20532

In [15]:
pred=grid_model.predict(X_test)
In [16]:
from sklearn.metrics import mean_squared_error , mean_absolute_error
MAE= mean_absolute_error(y_test,pred)
RMS=np.sqrt(mean_squared_error(y_test,pred))
In [17]:
MAE
Out[17]:
14195.354900562172
In [18]:
RMS
Out[18]:
20558.508566893164

Great work!¶